On the buckling analysis of functionally graded sandwich beams using a unified beam theory
Authors
Abstract:
In this paper, a unified beam theory is developed and applied to study the buckling response of two types of functionally graded sandwich beams. In the first type (Type A), the sandwich beam has a hardcore whereas in the second type (Type B), the sandwich beam has a softcore. In both the type of beams, face sheets are made up of functionally graded material. The material properties of face sheets are varied through the thickness according to the power-law distribution. A unified beam theory developed in the present study uses polynomial and non-polynomial type shape functions in-terms of thickness coordinate to account for the effect of shear deformation. The present theory is built upon classical beam theory and shows a realistic variation of transverse shear stresses through the thickness of the beam. The governing equations are deduced based on the principle of virtual work. Analytical solutions for simply supported sandwich beams subjected to axial force are presented. The critical buckling load factors of two types of FG sandwich beams are investigated. The numerical results are obtained for various power law coefficients and face-core-face thickness ratios. The validity of the present theory is proved by comparing the present results with various available solutions in the literature.
similar resources
On Static Bending, Elastic Buckling and Free Vibration Analysis of Symmetric Functionally Graded Sandwich Beams
This article presents Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of symmetric functionally graded (FG) sandwich beams using a hyperbolic shear deformation theory. The beam has FG skins and isotropic core. Material properties of FG skins are varied through the thickness according to the power law distribution. The present theory accounts fo...
full textTemperature-Dependent Buckling Analysis of Functionally Graded Sandwich Cylinders
This study is limited to study of buckling analysis of a sandwich cylindrical shell with functionally graded face sheets and homogenous core. High-order sandwich plate theory is improved by considering the in-plane stresses of the core that usually are ignored in the analysis of sandwich structures. Assume that all properties of the face sheets and the core are temperature dependent. Strain com...
full textThermal Buckling of Functionally Graded Beams
In this article, thermal stability of beams made of functionally graded material (FGM) is considered. The derivations of equations are based on the one-dimensional theory of elasticity. The material properties vary continuously through the thickness direction. Tanigawa's model for the variation of Poisson's ratio, the modulus of shear stress, and the coefcient of thermal expansion is considered...
full textVibration and Buckling Analysis of Functionally Graded Flexoelectric Smart Beam
In this paper, the buckling and vibration behaviour of functionally graded flexoelectric nanobeam is examined. The vibration and buckling formulations of functionally graded nanobeam are developed by using a new theory that’s presented exclusively for flexoelecteric nano-materials. So by considering Von-Karman strain and forming enthalpy equation based on displacement, polarization and electric...
full textAnalytic Approach to Free Vibration and Buckling Analysis of Functionally Graded Beams with Edge Cracks using four Engineering Beam Theories
A complete investigation on the free vibration and stability analysis of beams made of functionally graded materials (FGMs) containing open edge cracks utilizing four beam theories, Euler-Bernoulli, Rayleigh, shear and Timoshenko, is performed in this research. It is assumed that the material properties vary along the beam thickness exponentially and the cracked beam is modeled as two segments ...
full textthermal buckling of functionally graded beams
in this article, thermal stability of beams made of functionally graded material (fgm) is considered. the derivations of equations are based on the one-dimensional theory of elasticity. the material properties vary continuously through the thickness direction. tanigawa's model for the variation of poisson's ratio, the modulus of shear stress, and the coefcient of thermal expansion is...
full textMy Resources
Journal title
volume 51 issue 2
pages 443- 453
publication date 2020-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023